L1-norm approximation

The \ell_1-norm approximation problem is given by

(1)\begin{array}{ll}
\mbox{minimize}   &  \| Pu - q \|_1
\end{array}

with variable u \in \mathbf{R}^n and problem data P \in \mathbf{R}^{m \times n} and q \in
\mathbf{R}^m. The problem is equivalent to an LP

(2)\begin{array}{ll}
\mbox{minimize}   & \mathbf{1}^Tv \\
\mbox{subject to} &  \begin{bmatrix} P & -I\\ -P & - I \end{bmatrix}
                    \begin{bmatrix} u \\ v \end{bmatrix}
                    \preceq
                    \begin{bmatrix} q \\ -q \end{bmatrix}
\end{array}

with m + n variables and 2m constraints. Yet another equivalent formulation is the problem

(3)\begin{array}{ll}
\mbox{minimize}   & e^Ts + e^Tt \\
\mbox{subject to} &  Pu - q = s - t \\
                  & s, t \geq 0
\end{array}

with variables u \in \mathbf{R}^n, s \in \mathbf{R}^m, and t \in \mathbf{R}^m.

Documentation

A custom solver for the \ell_1-norm approximation problem is available as a Python module l1.py (or l1_mosek6.py or l1_mosek7.py for earlier versions of CVXOPT that use either MOSEK 6 or 7). The module implements the following four functions:

l1(P, q)

Solves the problem (2) using a custom KKT solver.

Returns the solution u.

l1blas(P, q)

Solves the problem (2) using a custom KKT solver. This function implements the same custom KKT solver as l1(), but it uses BLAS routines instead of overloaded arithmetic.

Returns the solution u.

l1mosek(P, q)

Solves the problem (2) using MOSEK. This function is only available if MOSEK is installed.

Returns the solution u.

l1mosek2(P, q)

Solves the problem (3) using MOSEK. This function is only available if MOSEK is installed.

Returns the solution u.

Example

from l1 import l1
from cvxopt import normal

m, n = 500, 100
P, q = normal(m,n), normal(m,1)
u = l1(P,q)