Installation instructions¶
Installing a pre-built package¶
Installing via conda
The conda-forge channel provides pre-built CVXOPT packages for Linux, macOS, and Windows that can be installed using conda:
conda install -c conda-forge cvxopt
These pre-built packages are linked against OpenBLAS and include all the optional extensions (DSDP, FFTW, GLPK, and GSL).
Installing via pip
A pre-built binary wheel package can be installed using pip:
pip install cvxopt
Wheels for Linux:
are available for Python 2.7, 3.5, 3.6, 3.7, and 3.8 (32 and 64 bit)
are linked against OpenBLAS
include all optional extensions (DSDP, GLPK, GSL, and FFTW)
Wheels for macOS:
are available for Python 2.7, 3.5, 3.6, 3.7, and 3.8 (universal binaries)
are linked against BLAS/LAPACK from the Accelerate framework
include all optional extensions (DSDP, GLPK, GSL, and FFTW)
Wheels for Windows:
are available for Python 27, 3.5, 3.6, and 3.7 (64 bit only)
are linked against MKL
Python 3.5+ wheels include the optional extension GLPK (the wheel for Python 2.7 does no include any of the optional extensions)
Building and installing from source¶
Required and optional software
The package requires version 2.7 or 3.x of Python, and building from source requires core binaries and header files and libraries for Python.
The installation requires BLAS and LAPACK. Using an architecture optimized implementation such as ATLAS, OpenBLAS, or MKL is recommended and gives a large performance improvement over reference implementations of the BLAS and LAPACK libraries.
The installation also requires SuiteSparse. We recommend linking against a shared SuiteSparse library. It is also possible to build the required components of SuiteSparse when building CVXOPT, but this requires the SuiteSparse source which is no longer included with CVXOPT and must be downloaded separately.
The following software libraries are optional.
FFTW is a C library for discrete Fourier transforms.
GLPK is a linear programming package.
MOSEK version 9 is a commercial library of convex optimization solvers.
DSDP5.8 is a semidefinite programming solver.
Installation
CVXOPT can be installed globally (for all users on a UNIX/Linux system) using the command:
python setup.py install
It can also be installed locally (for a single user) using the command:
python setup.py install --user
To test that the installation was successful, run the included tests using:
python -m unittest discover -s tests
or alternatively, if pytest is installed:
pytest
If Python does not issue an error message, the installation was successful.
It is also possible to install CVXOPT from source using pip:
pip install cvxopt --no-binary cvxopt
Additional information can be found in the Python documentation.
Customizing the setup script¶
If needed, the default compilation can be customized by editing setup.py or by means of environment variables. The following variables in the setup script can be modified:
BLAS_LIB_DIR
: the directory containing the LAPACK and BLAS libraries.BUILD_GSL
: set this variable to 1 if you would like to use the GSL random number generators for constructing random matrices in CVXOPT. IfBULD_GSL
is 0, the Python random number generators will be used instead.GSL_LIB_DIR
: the directory containinglibgsl
.GSL_INC_DIR
: the directory containing the GSL header files.BUILD_FFTW
: set this variable to 1 to install thecvxopt.fftw
module, which is an interface to FFTW.FFTW_LIB_DIR
: the directory containinglibfftw3
.FFTW_INC_DIR
: the directory containingfftw.h
.BUILD_GLPK
: set this variable to 1 to enable support for the linear programming solver GLPK.GLPK_LIB_DIR
: the directory containinglibglpk
.GLPK_INC_DIR
: the directory containingglpk.h
.BUILD_DSDP
: set this variable to 1 to enable support for the semidefinite programming solver DSDP.DSDP_LIB_DIR
: the directory containinglibdsdp
.DSDP_INC_DIR
: the directory containingdsdp5.h
.SUITESPARSE_LIB_DIR
: the directory containing SuiteSparse libraries.SUITESPARSE_INC_DIR
: the directory containing SuiteSparse header files.SUITESPARSE_SRC_DIR
: the directory containing SuiteSparse source. The variablesSUITESPARSE_LIB_DIR
andSUITESPARSE_INC_DIR
are ignored and relevant parts of SuiteSparse are build from source whenSUITESPARSE_SRC_DIR
is specified.MSVC
: set this variable to 1 if compiling with MSVC 14 or later
Each of the variables can be overridden by specifying an environment variable
with the prefix CVXOPT_
. For example, the following command installs CVXOPT
locally with BUILD_FFTW=1
:
CVXOPT_BUILD_FFTW=1 python setup.py install --user
This approach also works with pip:
export CVXOPT_BUILD_FFTW=1
pip install cvxopt --no-binary cvxopt
Support for the linear, second-order cone, and quadratic programming solvers in MOSEK is automatically enabled if both MOSEK and its Python interface are installed.
Ubuntu/Debian¶
Building CVXOPT from source in Debian/Ubuntu requires the packages
build-essential
and python-dev
as well as BLAS and LAPACK library packages
such as
libopenblas-dev
libatlas-dev
libblas-dev
andliblapack-dev
If multiple BLAS and LAPACK libraries have been installed, you can verify the current configuration using the following commands:
update-alternatives --config libblas.so.3
update-alternatives --config liblapack.so.3
See also
Debian Science: Handle different versions of BLAS and LAPACK.
As of Ubuntu 16.04, SuiteSparse can be installed as a dynamic library by
installing the libsuitesparse-dev
package. Alternatively, if SuiteSparse is
not available as a dynamic library, the
SuiteSparse source must be available.
To build the optional CVXOPT extensions (DSDP, FFTW, GLPK, and GSL), the following packages should be installed as well:
libdsdp-dev
libfftw3-dev
libglpk-dev
libgsl-dev
When all the necessary Ubuntu packages have been installed, CVXOPT can be built with all extensions in Ubuntu 16.04 (or later) as follows:
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
git checkout `git describe --abbrev=0 --tags`
export CVXOPT_BUILD_DSDP=1 # optional
export CVXOPT_BUILD_FFTW=1 # optional
export CVXOPT_BUILD_GLPK=1 # optional
export CVXOPT_BUILD_GSL=1 # optional
python setup.py install
To use the Intel MKL library instead of ATLAS or OpenBLAS, include the following commands
before running python setup.py install
:
pip install mkl
MKLLIB=mkl_rt
PYDIR=`pip show mkl | grep Location | cut -d' ' -f 2`
MKLDIR=`grep lib${MKLLIB} $PYDIR/mkl*/RECORD | cut -d, -f1`
PREFIX_LIB=`dirname $PYDIR/$MKLDIR`
export CVXOPT_LAPACK_LIB=${MKLLIB}
export CVXOPT_BLAS_LIB=${MKLLIB}
export CVXOPT_BLAS_LIB_DIR=${PREFIX_LIB}
export CVXOPT_BLAS_EXTRA_LINK_ARGS="-L${PREFIX_LIB};-Wl,-rpath,${PREFIX_LIB};-l${MKLLIB}"
In older versions of Ubuntu where SuiteSparse is not available as a dynamic
library, the necessary SuiteSparse components can be built with CVXOPT
by downloading the SuiteSparse source and setting CVXOPT_SUITESPARSE_SRC_DIR
to the SuiteSparse source directory:
git clone https://github.com/DrTimothyAldenDavis/SuiteSparse.git
pushd SuiteSparse
git checkout v5.6.0
popd
export CVXOPT_SUITESPARSE_SRC_DIR=$(pwd)/SuiteSparse
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
git checkout `git describe --abbrev=0 --tags`
export CVXOPT_BUILD_DSDP=1 # optional
export CVXOPT_BUILD_FFTW=1 # optional
export CVXOPT_BUILD_GLPK=1 # optional
export CVXOPT_BUILD_GSL=1 # optional
python setup.py install
macOS¶
Building CVXOPT from source in macOS requires the Command-line tools which can be installed using the command:
xcode-select -p
With Homebrew
Homebrew users can build CVXOPT with FFTW, GLPK, and GSL as follows:
brew install gsl fftw suite-sparse glpk
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
git checkout `git describe --abbrev=0 --tags`
export CVXOPT_BUILD_FFTW=1 # optional
export CVXOPT_BUILD_GLPK=1 # optional
export CVXOPT_BUILD_GSL=1 # optional
python setup.py install
To use OpenBLAS instead of the built-in BLAS/LAPACK
libraries, include the following commands before running
python setup.py install
:
brew install openblas
export CVXOPT_BLAS_LIB_DIR=/usr/local/opt/openblas/lib
export CVXOPT_BLAS_LIB=openblas
export CVXOPT_LAPACK_LIB=openblas
Alternatively, to use the Intel MKL library, include the following commands
before running python setup.py install
:
pip install mkl
MKLLIB=mkl_rt
PYDIR=`pip show mkl | grep Location | cut -d' ' -f 2`
MKLDIR=`grep lib${MKLLIB} $PYDIR/mkl*/RECORD | cut -d, -f1`
PREFIX_LIB=`dirname $PYDIR/$MKLDIR`
if [[ $OSTYPE == darwin* ]]; then
install_name_tool -change @rpath/libiomp5.dylib @loader_path/libiomp5.dylib ${PREFIX_LIB}/libmkl_intel_thread.dylib
fi
export CVXOPT_LAPACK_LIB=${MKLLIB}
export CVXOPT_BLAS_LIB=${MKLLIB}
export CVXOPT_BLAS_LIB_DIR=${PREFIX_LIB}
export CVXOPT_BLAS_EXTRA_LINK_ARGS="-L${PREFIX_LIB};-Wl,-rpath,${PREFIX_LIB};-l${MKLLIB}"
pip install git+https://github.com/cvxopt/cvxopt
Without Homebrew
If SuiteSparse is not available as a dynamic library, the necessary SuiteSparse
components can be built with CVXOPT by downloading the SuiteSparse source and
setting CVXOPT_SUITESPARSE_SRC_DIR
to the SuiteSparse source directory:
git clone https://github.com/DrTimothyAldenDavis/SuiteSparse.git
pushd SuiteSparse
git checkout v5.6.0
popd
export CVXOPT_SUITESPARSE_SRC_DIR=$(pwd)/SuiteSparse
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
git checkout `git describe --abbrev=0 --tags`
python setup.py install
Windows¶
We will assume that Python (64 bit), git, wget, and 7-zip are installed and in the search path. These can be installed with the Chocolatey package manager:
choco install -y wget git python2 7zip.commandline
We also will assume that the environment variable %PYTHON%
contains
the path to the Python installation directory, e.g.,
set PYTHON=c:\PythonXX
or alternatively,
for /f %i in ('python -c "import sys, os; print(os.path.dirname(sys.executable))"') do set PYTHON=%i
where %
must be replaced by %%
if the above line is included in a batch file.
Finally, we will assume that pip is available;
if it is not, it can now be installed with easy_install
:
%PYTHON%\Scripts\easy_install pip
Python 2.7, Python 3.4
CVXOPT can be built for Windows (64 bit) with the Mingwpy toolchain and MKL. Note that Mingwpy currently only supports Python version 2.7 through 3.4.
Open the Command Prompt and execute the following commands:
rem Download SuiteSparse source
git clone https://github.com/DrTimothyAldenDavis/SuiteSparse.git
cd SuiteSparse
git checkout v5.6.0
cd ..
set CVXOPT_SUITESPARSE_SRC_DIR=%CD%\SuiteSparse
rem Install MKL
pip install mkl
set CVXOPT_BLAS_LIB_DIR=%PYTHON%\Library\lib
set CVXOPT_BLAS_LIB=mkl_rt
set CVXOPT_LAPACK_LIB=mkl_rt
rem Install mingwpy Python extension using pip
pip install -i https://pypi.anaconda.org/carlkl/simple mingwpy
rem Clone CVXOPT repository, compile, install, and run tests
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
for /f %%a in ('git describe --abbrev^=0 --tags') do git checkout %%a
python setup.py build --compiler=mingw32
python setup.py install
python -m unittest discover -s tests
Python 3.5+
CVXOPT 1.2.0+ can be built for Windows (64 bit) with MSVC14 and MKL.
Open the Command Prompt and execute the following commands:
rem Download SuiteSparse source
git clone https://github.com/DrTimothyAldenDavis/SuiteSparse.git
cd SuiteSparse
git checkout v5.6.0
cd ..
set CVXOPT_SUITESPARSE_SRC_DIR=%CD%\SuiteSparse
rem Install MKL
pip install mkl
set CVXOPT_BLAS_LIB_DIR=%PYTHON%\Library\lib
set CVXOPT_BLAS_LIB=mkl_rt
set CVXOPT_LAPACK_LIB=mkl_rt
rem Clone CVXOPT repository, compile, install, and run tests
git clone https://github.com/cvxopt/cvxopt.git
cd cvxopt
for /f %%a in ('git describe --abbrev^=0 --tags') do git checkout %%a
set CVXOPT_MSVC=1
python setup.py build --compiler=msvc
python setup.py install
python -m unittest discover -s tests